Etwa ein Drittel der Erdoberfläche ist mit Land bedeckt. Davon ist etwas mehr als ein Drittel Agrarfläche (Weideland, Ackerland) und etwa ein Drittel bewaldet. Pflanzen haben einen wesentlichen Anteil am Stoffumsatz in den oberen Bodenschichten und eine wesentliche Rolle im Wasserhaushalt und beim Wasseraustausch zwischen Boden und Atmosphäre. Wasser verdunstet – vor allem tagsüber bei Sonneneinstrahlung – aus kleinen Öffnungen in den Blättern einer Pflanze. Diese Verdunstung erzeugt einen Unterdruck, der dazu führt, dass Flüssigkeit über die Wurzeln aus dem Boden aufgenommen wird und über ein wasserleitendes Gefäßsystem (Xylem) bis in die Blätter transportiert wird. Sowohl der Boden, als auch die Wurzeln selbst sind poröse Medien!
Die Gestalt und der Aufbau des Wurzelsystems unterscheidet sich dabei stark zwischen verschiedenen Pflanzenspezies und mit den Umweltbedingungen (z.B. mit dem Wassergehalt des Bodens).
Manche Pflanzen sondern eine gelartige Substanz von den Wurzeln ab, die die Bodeneingenschaften modifiziert und der Pflanze erlaubt sogar aus sehr trockenen Böden noch Wasser aufzunehmen. Feine Wurzelhaare, die auf der Oberfläche vieler Wurzeln sitzen, spielen vermutlich auch eine Rolle bei der Wasseraufnahme. Durch komplexe Wurzelwerke können Pflanzen auch dafür sorgen, dass das vorhandene Wasser im Boden umverteilt wird. Solche Prozesse können nicht nur in Experimenten, sondern auch durch Computersimulation analysiert werden. Zum Beispiel kann mit einer Simulation die komplexe Interaktion zwischen der direkten Verdunstung an der Bodenoberfläche und der Verdunstung über Pflanzen analysiert werden. Dabei kommt uns zugute, dass man in einer Simulation Prozesse einfach an- und abschalten kann und somit deren Wirkung sowohl isoliert, als auch in Interaktion mit anderen Prozessen beobachten kann. Auf Basis von detaillierten Simulationen von einer oder wenigen Pflanzen, kann dann zum Beispiel entschieden werden, ob solche Prozesse in großskaligen Simulationen, wie Klimasimulationen, berücksichtigt werden müssen oder vernachlässigt werden können.
An der Universität Stuttgart arbeiten wir zusammen mit Kollegen vom Forschungszentrum Jülich an der Entwicklung von Computermodellen für Wasser- und Stofftransport in Böden mit Wurzeln, auch in Kombination mit Wurzelwachstumssimulationen. Diese Modellen sind wichtige Werkzeuge um wissenschaftliche Hypothesen zu überprüfen. Allerdings geht dies nur, wenn die Modelle die eingebauten Prozesse auch möglichst akkurat abbilden. Zum Beispiel überschätzen die meisten existierenden Modelle, bei gegebenem Atmosphärendruck, die Wasseraufnahme in trockenen Böden. Wir untersuchen und verbessern Modelle hinsichtlich solcher Defizite.
Credits: Timo Koch, Universität Stuttgart
Risse und Klüfte sind ein häufig auftretendes Merkmal in geologischen Gesteinsformationen und haben einen sehr großen Einfluss auf deren hydraulische und mechanische Eigenschaften. Zum Beispiel führt das Vorhandensein hochdurchlässiger Klüfte dazu, dass ein ansonsten schwach durchlässiges Material Fließpfade für einen schnellen Transport eines Fluids entlang der Klüfte aufweist. Abgesehen davon bieten die Rissflächen eine Austauschfläche für den Transfer von Masse und/oder Wärme zwischen den Klüften und dem umliegenden Gestein. Dies machen sich diverse geotechnische Anwendungen zunutze, wie zum Beispiel die geothermische Energiegewinnung oder die unkonventionelle Gewinnung von Öl oder Gas aus Schiefergestein.
Die Motivation zur Entwicklung des hier präsentierten Modells enstammt allerdings aus einem Projekt bezüglich der Entsorgung radioaktiver Abfälle. Ein diskutierter Ansatz ist die Entsorgung der Abfälle in unterirdischen Tunnelsystemen innerhalb schwach durchlässigen Tongesteins. Die Idee ist, die Abfälle in Metallkanistern in diese Tunnel einzubringen, wobei das umliegende Gestein als Barriere für den Transport potentiell radioaktiver Substanzen über lange Zeiträume dienen soll. Dieser Transport würde unter Anderem dadurch angetrieben, dass die anaerobe Korrosion der Metallkanister zum Entstehen von Wasserstoffgas und einem damit verbundenen Druckanstieg innerhalb des Tunnels führt. Zudem finden sich in dem die Tunnels umgebenden Gestein Klüfte, die durch deren Bau eingebracht werden.
Die wissenschaftliche Fragestellung lautet nun, in welchem Maße die vorhandenen Klüfte die hydraulischen Eigenschaften des umliegenden Gesteins beeinflussen. Da das Tonmaterial recht weich ist, wird davon ausgegangen, dass sich die Klüfte, durch den Druckanstieg in den Tunnels, aufweiten und dadurch wiederum begünstigend auf den Abbau des Druckanstiegs wirken können. Hierzu sollen experimente an zylindrischen Gesteinsproben stattfinden, die dieses Aufweiten der Klüfte als Funktion des Druckanstiegs quantifizieren sollen.
Das hier vorgestellte Modell soll dabei helfen, diese Experimente besser zu interpretieren und kann außerdem dazu genutzt werden, die Veränderung der hydraulischen Eigenschaften für verschiedene, künstlich erzeugte Gesteinsproben und Rissnetzwerke zu untersuchen. Dies ist in experimentellen untersuchungen nur schwer oder nur unter sehr hohem technischen und finanziellen Aufwand möglich. Das Modell berücksichtigt ein poroelastisches Verhalten des Gesteins, das heißt, es wird die Interaktion zwischen der Strömung durch das Gestein und dessen Verformung modelliert, wobei das Gestein durch ein elastisches Materialgesetz beschrieben wird. Des Weiteren wird die Strömung entlang der Klüfte berücksichtigt, welche als zweidimiensonale Geometrien beschrieben werden, da die Öffnungsweiten in der Regel sehr klein sind im Vergleich zu den Abmessungen der Gesteinsproben. Die Öffnungsweite ist im Modell dann eine Variable, die auf den Rissflächen definiert ist und welche eine Funktion der Deformation des Gesteins ist.
Dadurch wird der Einfluss der Deformation auf die hydraulischen Eigenschaften der Klüfte, und dadurch letztlich auch auf die hydraulischen Eigenschaften der gesamten Gesteinsprobe, erfasst.
Credits: Universität Stuttgart / Dennis Gläser
Die Magnetresonanztomographie / Kernspintomographie (MRT) ist ein in der Medizin enorm wichtiges und vielfältiges Bildgebungsverfahren. Das Verfahren beruht auf der Resonanz von Wasserstoffatomkernen auf Radiofrequenzsignalen in einem starken Magnetfeld. Das Verfahren ist auch beliebt, weil es ohne belastende Strahlung (wie Rötgenstrahlung) auskommt. Es wird zur Diagnose von Krankheiten und für die Analyse von Struktur und Funktion von Gewebe eingesetzt. MRT ist zum Beispiel essentiell für die Diagnose und Beobachtung von Gehirntumoren, sowie bei der Analyse von neurodegenerativen Krankheiten wie Alzheimer und Parkinson, oder Erkrankungen des zentralen Nervensystems, wie der Multiplen Sklerose. Dort werden auch oft zeitaufgelöste MRT-Verfahren verwendet, bei denen die Ausbreitung eines in die Blutbahn injizierten Kontrastmittels beobachtet wird (Perfusions-MRT).
Warum ist es entscheidend, dass das Gehirn porös ist?
Gehirngewebe besteht, wie die meisten biologischen Gewebe, aus einem Gemisch aus Zellen, Fasern und Flüssigkeit, die sich in den Zellen und im Zellzwischenraum (Porenraum) befindet. Die Zellen werden von Blutgefäßen mit Sauerstoff und Nährstoffen versorgt. Blutgefäße selber bestehen ebenfalls aus Zellen, und auch Blut ist ein Gemisch aus Flüssigkeit und verschiedensten Zellen. Dieser komplexe Aufbau erschwert es das MRT-Signal zu interpretieren.
Wie können Computersimulationen helfen?
Computermodelle bilden die Grundlage für die Bildnachbearbeitung beim Perfusions-MRT. Dabei wird die Kontrastmittelausbreitung und das MRT-Verfahren im Computer simuliert und mit den Bildpunkten verglichen. Daraus lassen sich dann bestimmte Eigenschaften des Gehirngewebe ableiten. Zum Beispiel kann der Blutvolumenanteil abgeschätzt werden, ein wichtiger Indikator in der Beobachtung von Tumoren, aber auch zum Beispiel um den Schaden eines Schlaganfalls abzuschätzen. Einfache Simulationen dauern nur Sekunden und geben Ärtzen sofort wichtige, zusätzliche Informationen als Entscheidungshilfe.
An der Universität Stuttgart arbeiten Forscher*rinnen an der Entwicklung von zukünftigen Simulationstechniken, mit dem Ziel zusätzliche und detailliertere Informationen aus MRT Sequenzen abzuleiten. Mit Computersimulationen versuchen sie zu verstehen, wie sich Kontrastmittel im komplexen Gehirngewebe ausbreitet und wie sich verschiedene Eigenschaften des Gewebes auf das MRT Signal auswirken.
Credits: Timo Koch, Universität Stuttgart
Alles Porös
01
01
Simulationsgalerie
Simulationsgalerie
1: Wasseraufnahme durch junge, wachsende Wurzeln
Diese Simulation zeigt das wachsendes Wurzelsystem zweier junger Pflanzen, die Wasser in einem Blumentopf aufnehmen. Der Boden trocknet langsam aus.
Modell: Boden und Wurzel
Simulation: Wassertransport und Wurzelwachstum
Die Wurzeln sind durch braune Röhrenelemente dargestellt. Blauer Boden
bedeutet hoher Wassergehalt, brauner Boden niedriger Wassergehalt.
Zum Vertiefungstext
2: Strömung durch Gestein mit Rissen
Diese Simulation zeigt die druckgetriebee Strömung eines Öls durch eine zylindrische Gesteinsprobe, in der elliptische Risse enthalten sind. Die veränderten Druckverhältnisse führen zu einer Aufweitung der Risse.
Modell: poröses Gestein und Klüfte
Simulation: Durchströmung und Deformation
Das Gestein ist in grau dargestellt, während der blau gefärbte Bereiche aufzeigt,bis wohin das Öl bereits geflossen ist. Die Pfeile zeigen die Fließgeschwindigkeiten des Öls innerhalb des Gesteins und die Deformation der Probe ist stark überzeichnet dargestellt.
Zum Vertiefungstext
3: Kontrastmittelausbreitung in Blutkapillaren und umliegendem Gewebe
Diese Simulation zeigt die Kontrastmittelausbreitung in den kleinsten Blutgefäßen (Mikrozirkulation). Blut wird in der Simulation als Flüssigkeit vereinfacht. Der Zellanteil im Blut wird durch einen erhöhten Reibungswiderstand berücksichtigt. Das poröse Gewebe, das die Blutgefäße umgibt, wird gemittelt beschrieben. Die einzelnen Poren (Zellzwischenräume) sind in dieser Betrachtung nicht sichtbar.
Modell: Gehirngewebe und Kapillarbett
Simulation: Blutfluss und Kontrastmittelausbreitung
Das Kapillarnetzwerk entstammt einen Rattengehirn und repräsentiert alle Blutgefäße in einem Gewebewürfel; 1mm breit 1mm tief und 2mm hoch. Das Kontrastmittel ist als schwarze Wolke erkennbar. Kontrastmittelaustritt ist in dieser Simulation auf einen kleinen Bereich in der Mitte des Netzwerks beschränkt. Ausgetretenes Kontrastmittel ist orange angefärbt.
Zum Vertiefungstext